

Product Overview

With high precision, high dynamic and wide-ranging output of universal programmable DC power supply, the PVD series products can be used in photovoltaic inverter test solar panel simulation and common electrical power testing. Built-in independent high-precision voltage and current measurement system, as well as convenient programming, which bringing DC test instruments into new level.

Selection

Power	Model	Voltage	Current
30kW	PVD0224	200V	240A
	PVD0324	360V	240A
	PVD0518	500V	180A
	PVD0618	600V	180A
	PVD0808	800V	80A
	PVD1008	1000V	80A
	PVD1506	1500V	60A
	PVD2006	2000V	60A

XIAN ACTIONPOWER ELECTRIC CO., LTD.

密级:公开

Power	Model	Voltage	Current		Power	Model	Voltage	Current
	PVD4V66E 40V 667A		PVD4V50E	40V	667A			
	PVD6V66E	60V	667A			PVD6V50E	60V	667A
	PVD8V66E	80V	667A]		PVD8V50E	80V	667A
	PVD0216E 200V 240A PVD0316E 360V 240A		PVD0212E	200V	160A			
		360V	240A		15kW	PVD0312E	360V	160A
20kW	PVD0512E	500V	180A			PVD0509E	500V	120A
	PVD0612E	600V	180A			PVD0609E	600V	120A
	PVD0805E	800V	80A			PVD0804E	800V	54A
	PVD1005E	1000V	80A]		PVD1004E	1000V	54A
	PVD1504E 1500V 60A		PVD1503E	1500V	45A			
	PVD2004E	VD2004E 2000V 60A			PVD2003E	2000V	45A	

Product Advantages

High dynamics

PVD model delivers dynamic performance in the order of 500µs to 1ms, capable to simulate field abnormal conditions in lab.

Transient full load, response time is 112µs

High accuracy

Up to 6½ digit measurement system; voltage and current accuracy up to mV/mA level.

PVD model has a built-in independent high precision voltage and current measurement system, with performance comparable to a 6½ digit multi-meter, which could save the cost for extra high precision DC voltmeter, high precision ammeter, power meter and impedance meter. The device data can be used as a basis for product performance judgement, and when used as a PV inverter tester, the high accuracy measurement system can more accurately

密级:公开

measure the tracking efficiency of the product under test.

PVD measuring voltage vs. 6½ digit multi-meter

Digital matrix parallel system

PVD model is equipped with a matrix, high-speed fiber-optic digital parallel system that can combine up to 100 units into a complete system, creating a total power up to 3000 kW. After parallel installation, the performance of the system still equivalent to the standards of a single machine.

PVD model is equipped with parallel redundancy, so that if some of the slave machines are protected on the non-output or AC side during operation, the remaining PVD can continue to work and actively distribute the current to ensure the normal conduct of the test.

Function Generation

All models of PVD series can superimpose sine, triangle, pulse and square waves on the DC output; the frequency resolution of the expected waveform output waveform is 0.01, up to 10kHz; the DC component value of the expected output waveform, with a resolution of 0.001; to meet the test article for DC voltage ripple adaptability testing.

DC200V superimposed on AC100V sine wave

High power density: 3U/30kW

PVD model has the highest power density and feed-back efficiency compared to similar products, with up to 30kW of power in a 3U volume and a light weight of 35kg. A single standard 42U cabinet can be configured with 300kW capacity, and the matrix parallel system can be easily expanded to 3MW capacity, which greatly reduces the test fields and meets the transportation, load-bearing and power distribution requirements of standard commercial office buildings.

Product Features

Function Programming

In addition to the traditional List, Wave, Step and Advanced programming functions, PVD model also supports function editing, sine wave, pulse wave, triangle wave and custom wave programming functions to meet the individual needs of product development and testing, regulatory testing and certification, production line testing and quality control. The programming data can be saved and exported to another machine for operation, reducing the user's workload.

Wave programming interface

Programming waveform

XID安岩和宴博电气股份有限公司 XIDAN ACTIONPOWER ELECTRIC CO., LTD.

密级:公开

Step programming interface

Programming waveform

Superimposed 2000Hz sine wave

Programming interface Programming waveform

VW80300 EHV-03 High Voltage Cycle

Programming Interface Programming Waveform

Four output modes

The PVD has four modes of constant voltage (CV), constant current (CC), constant power (CP) and constant resistance (CR) indication, of which the CC, CV and CP modes can be switched automatically according to the formula P=UI, i.e. the PVD will work in this mode when any of the voltage, current or power parameters at the output reaches the limit value

SAS model

The SAS solar cell simulator function can accurately simulate the output I-V characteristic curve of solar panels, with built-in SAS models from EN50530, Sandia, CGC/GF004, CGC/GF035 and other standards, for testing static and dynamic MPPT of PV inverters. For MPPT efficiency, the "Programmable Power Supply Virtual Terminal" software is required for complete testing of the PV industry.

Its high precision measurement and control system enables more accurate testing of the maximum tracking efficiency of solar inverters. The I-V curve can be simulated by setting parameters such as Voc and Isc. It supports the simulation of a wide range of panel types, with shading masking and custom curve editing functions. Built-in curves up to 4096 points to accurately simulate I-V curves. Log and report generation to record curve changes.

E D C	B B B C	State Denio	● - Ø × ※冠和顧問	E D C	2 E € 6 6 200 bres 100 000 bres 1000 bres 100 000 bres 100 000 bres 100 000 bres 100 000 bres 1
Denice	Static come Scanning Static Int. Static MIPT Dynamic MIPT Weather Cure program Shadow User come D Toroton	Settings	Elmont 2 Front	Desice	Static curve Scanning Static list. Static MIV71 Dynamic WIV71 Weather Curve program Shadow User curve Settings
🔛 Mode	^ Curve		a de la de l	-	D-Sart Ding @ Gerseguerce £ Inport Z. Export
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter		88 Mode	∧ Curve
A Seath		Veg 10	V Ver 1244 V	🛦 Steedy	1 Faranceir Vero 0 V Vero V
E Programming	June 3	Pep 441			44 44 10 A 10 A
Maneform	" in	Measure		C	8 a a a a a a a a a a a a a a a a a a a
		0.0	V I O A	Maveform	a) a3 Messee
222 540				1 sas	e el 84 ag 64 M L p 0 to prop 0 to
🗮 tatSin	A Model			-	
	Sandia Raeiz Sandia Aduanced ENSESID Raeiz ENSESID Advanced Single			arSin 1	Core Triedy Poges
	Ying (N) Ing (K) Ping (M)				1 810 0.00 %
	10 1 0.012				No. Ourse file name Execute three(s)
	Vioc01 hosAi 12 1.5				1 (Kurve file net imported) 60 _ ± ±

Curve programming

E D (Nenu Open Ra	Cox	State Demo	× ≣ ▷ C Nenu Open Reo	R Petresh Disars Lock	
Device	Static curve Sciencing Static Int Static MP77 Dynamic MPP7 Weather Curve program Shadov User curve D Static Col Col	Settings <u> </u>	Device	Static curve Scenning Static Init Static M997 Dynamic M997 Weather Curve program Shadow User curve Settings D Start C Vice	import 2 Depart
🚼 Mode	~ One		E Mode	∧ Care	1
🔬 Steady	1 U	52 1	🚖 Steady		
E Programming	20		🗮 Programming	61 11 11 11 11 11 11 11 11 11 11 11 11 1	44 44
Mandom	04 04 04 04 04 04 04 04 04 04 04 04 04 0		In Waveform		
母 545			Ø 56		4 50
BatSin	A Mode		🗎 tatin	a Moo	
	ENGINE v Sandwel v			(2002533	
	haa bit 10'0.6 200 - 100 - 10	PV 0.8 PT 8005 C0 8344 1.5 m/m2 CX 8344 1.2 m/m2 CX 1.001 1.6 m/m2 # 0.04 1.0 m/m2 \$\$\vec{1}\$ -0.04 1.0 m/m2		Preside Prisit 60	64 64 47 0.065 58 2.554 59 6.355 31 1.000 1 0.005 4 0.45 4 0.45 4 0.45 4 0.45
	→ Static MPPT			A Dynamic MPPT	
	Setup Time(s) 🖸 Report Time(s) Progress			setup Timeki Referi timeki ⊉Report Timeki Rogres	
	00 Sudded00.cm _ 600 600 %			300 0.01 · DynamicText000.cv _ 7.0.5	
	2 Vmp(V) Mean Time(v) 2 5 % 2 10 % 22 5 % 22 55 % 22 15 % 22 55 % 22 1			From(w/tm?) To(w/m?) Sope: From(K) To(K) #Cycles RampUp() Dwel High(i) RampDown(i) Dwel Low(i) Dwellow(i) MPPT R1%) Progress	
				2 10 100 LT 25 25 1 998 30 980 30 2320	
	e 10 000			🕑 101 501 15 25 25 2 601 10 601 10 596	· · ·

Static MPPT

Dynamic MPPT

XIAN ACTIONPOWER ELECTRIC CO.,LTD.

密级:公开

U Open Re	C E % C	State Denso (1) 8 ー の × ※証証問題開	Here Open &	C E C Contraction
Device	Static canve Scanning Static list Static MIPT Dynamic MIPT Weather Canve program Stadow User canve D Static Canve program Stadow User canve	Settings	Device	Static curve Scanning Static Itit Static MPPT Dynamic MPPT Illeafter Curve prayram Station User curve Settings
Mode	^ Cire		88 Mode	
Steady Programming Waveform SAS BetSim		12 13 14 15 15 16 12 12 10 10	 ▲ Savady E Programming ▲ Waveform ♦ SAS ▲ Database 	Main Main Main Main Main 1
	Tank Adventer Matter strage_dip di strage_dip di strage_dip di strage_dip display	See III Jees Too data 601 828 InserverConstrain 602 338 HeigendelsenerConstrain 61 43		Statution No. Fig. No. Fig. No. Fig. No. Fig. No. <
	30 Second-Stational - 0.01 - <td></td> <td></td> <td></td>			

Weather Simulation

Curve import and export

Once a valid USB storage device is plugged in, clicking on the "USB" button will switch to the data import screen.

Press "Export" to export the static curve data from the device to an external USB memory device; the screen will display "Data export in progress..." If the operation is successful, "Data export successful!" will be displayed. ." will be displayed. If the export is successful, the display will be refreshed with a list of files.

Pressing "Import" will import the file from the currently selected external USB memory device into the device and the parameters in the file will be displayed on the screen; "Data import in progress..." will be displayed on the screen If the operation is successful, the display will show "Data imported successfully.

Ready Source					2023-05-25 17:21:39	窗		$\cdot \equiv$
	Model	Parameter	Advanced	Data		F _×	Curve>SAS	
0.000000	No.	Filename		Date			Static curve	
0.000000a		Test01			Export		Scanning	
0.0000005	2	Test02			Import		User curve	
0.000000-	3	Test03						
	4	Test04		2023-05-07 22:03:50	Back			. ×

Waveform reproduction

The unique waveform reproduction function, which comes with its own display in the absence of an oscilloscope, provides an overview of the output status and solves the problem of temporarily viewing the output waveform.

Large aspect ratio touch screen

The PVD features an 8.8" screen, high resolution LCD touch display screen. It runs fast and is sensitive to touch. The user can operate and control the PVD by touching the display screen.

Dimensions

PVD models conform to a standard 19" chassis configuration and can be used in standard cabinet systems or desktop applications.

Cabinet models available: PVD-26U, PD-42U

Cabinet	Dimensions (W*D*H) mm	Range of applications
26U	600*800*1338	For 2-5 power supplies in parallel
42U	600*800*2050	For 5-8 power supplies in parallel

密级:公开

Specification

Output voltage	40V/60V/80V	200V/360V/	/800V/1000V	500V/600V1500V/2000V				
AC Input								
Voltage range	304Vac to 480Vac /	/ 380V±20%						
Frequency	47Hz to 63Hz							
Wiring method	3ph+PE							
Inrush current	<50A	<50A						
Efficiency up to	93.5%	94	4%	9	5%			
Power Factor	0.99							
Protective functions								
OVP	Overvoltage protection adjustable 0 - 110% U _{Nominal} (±1% F.S.)							
ОСР	Overcurrent protec	tion Adjustable 0V	'- ±110% I _{Nominal} (±1%	% F.S.)				
OPP	Over-power protec	tion range OV ~ ±1	10% P _{Nominal} (±1% F.	S.)				
ОТ	Overtemperature p	protection						
Voltage								
Programming accuracy	± 0.02% F.S.							
Programming resolution	± 1mV	± 10mV ± 10mV						
Display accuracy	± 0.02% F.S.							
Line regulation CV	± 0.01% F.S. (208V-480V AC±10% input voltage, constant load and constant temperature)							
Load regulation CV	± 0.01% F.S. (0-100	% load, constant ir	put voltage and co	nstant temperature	e)			
Ripple (rms) CV	<25mV	<60mV	<200mV	<200mV	<400mV			
Ripple and noise p-p CV	<300mVpp	<480mVpp	<1000mVpp	<1200mVpp	<2400mVpp			
Remote compensation	Max.voltage±1V		Max. voltage	and 2%F.S.±1V				
Rise time 10%-90% CV	2.5ms	500µs		500µs				
Fall time 90%-10% CV	2.5ms	500µs		500µs				
	Recovery to							
	steady state							
Deserves the s	within 2.5ms	Recovery to stea	dy state within 500	μs ±0.75% F.S. (50%	6 -100% or 100%			
Recovery time	±0.75% F.S.	-50% load)						
	(25%-50% or 50%							
	-25%) load							
Discharge time	≤20s	≤20s		≤30s				
Current								
Programming accuracy	± 0.15% F.S.	± 0.02	2% F.S.	± 0.0	2% F.S.			
Programming resolution	± 100mA	±1	0mA	± 1	0mA			
Display accuracy	± 0.15% F.S.	± 0.02	2% F.S.	± 0.0	2% F.S.			
Display resolution	± 10mA	± 1	lmA	± 1mA				
Line regulation CC	± 0.01% F.S. (208V-	480V AC±10% inpu	ut voltage, constant	load and constant	temperature)			
Load regulation CC	± 0.05% F.S. (0-100% load, constant input voltage and constant temperature)							

XIAN ACTIONPOWER ELECTRIC CO., LTD.

密级:公开

Rise time 10% - 90% CC	3ms	1ms	500µs			
Full time 90% - 10% CC	1ms 1ms 500µs					
Power						
Programming accuracy	± 30W	± 3W	±0.01% F.S.			
Programming resolution	± 10W	± 10W ± 1W ± 1W				
Display accuracy	± 30W	± 3W	± 3W			
Display resolution	± 10W	± 1W	± 1W			
Resistance						
Range	0.003-100Ω	0.05-100Ω	0.5-3000Ω			
Programming accuracy	1mΩ	0.01Ω	0.1Ω			
Programming resolution	1mΩ	0.01Ω	0.1Ω			
SAS	-					
Short-circuit current setting range	0A~le					
Simulated fill factor range	0.3~0.95					
Photovoltaic panel type selection	C-Si, Thin-film, Cust	om				
I-V curve update rate	Typical time 1ms, w	vith online curve switching function				
IV curve criteria	EN50530, Sandia, si	imple				
IV curve function	Static curves; curve	scanning; static sequences; static MPF	PT; dynamic MPPT; weather			
	simulation; Shading	of photovoltaic panels; curve progran	nming; custom curves etc.			
Curve setting	 IV curves can be customized with parameters such as Voc, Isc, FF and Pm; Dynamic working mode takes into account environmental influences such as temperature changes and irradiance, and can continuously output IV curves for different environments; Built-in EN50530/Sandia dynamic I-V curve test program; 					
Programming	I					
Programming mode	List, Wave, Step, Ac	lvanced				
Number of programming steps	200					
Cycle range	0~9999999 times					
Minimum programming time	100µs					
Mode of operation	Load, end, trigger					
Interfaces/Any port						
Functions and definitions	See "Any port inter	face specification"				
Isolation	707VDC					
Interface						
Rear nanel	Type-B USB, LAN, S	hare Bus, Magic-BUS, Magic-BOX				
	DC terminal, AC supply, Remote sensing, Analog interface					
Front panel	Type-A USB, ON/OFF Button, Out Button, Touch screen, Rotary knob					
Environment						
Operating temperature	0 to 50 (°C) (powe	er derating over 35°C)				
Storage temperature	-20 to 70(°C)					

XIIAN ACTIONPOWER ELECTRIC CO.,LTD.

密级:公开

Humidity	≤ 80%. Not condensing					
Height	Output current derating 2%/100m above 2000m or Ta derating 1°C/100m					
Insulation						
Negative - PE	±500 V DC ±1500VDC ±1500VDC					
Positive - PE	+ 500 V DC + 1500VDC + 2000VDC					
AC Input - PE	2.5 kV AC					
Other						
Size	W435mm x H132mm x D781mm					
Weight	40kg 35kg 35kg					

Note: The above accuracy test conditions are: 25°C ± 5°C;

Ripple voltage/Ripple(peak)@20MHz bandwide;

Ripple voltage/Ripple (rms) @ 300kHz LF;

Voltage swing rate / Slew rate (Without load).